Paradigm Change: Can older refractory and relapsed AML patients undergo a successful stem cell transplant without entering complete remission first?

Joseph Jurcic, MD, Chair

Director, Hematologic Malignancies Section, Hematology/Oncology Division, Professor of Medicine at Columbia University Medical Center; Attending Physician, New York-Presbyterian Hospital

Participants:

Mark Frattini, MD, PhD, Director of Research for Hematologic Malignancies Section, Associate Professor of Medicine at Columbia University Medical Center; Associate Attending Physician, New York-Presbyterian Hospital

Sergio Giralt, MD, Chief, Adult BMT Service, Memorial Sloan Kettering Cancer Center

Markus Mapara, MD, PhD, Director, BMT Program, Columbia University Medical Center; Professor of Medicine; Attending Physician, New York-Presbyterian Hospital

Peter Maslak, MD, Chief, Hematology Laboratory Service, Memorial Sloan Kettering Cancer Center

Sebastian Mayer, MD, Assistant Professor of Medicine, Weill Cornell Medical College; Assistant Attending Physician, New York-Presbyterian Hospital

Agenda

- AML background
- Current treatment approaches
- Radioimmunotherapy before HCT
 - Iomab-B overview
 - Clinical results to date
- Proposed phase III trial

Development of AML

Normal Hematopoiesis

Leukemogenesis

AML Survival by Age

2012 AML Incidence by Age Group

Source: NCI SEER US Cancer Database, AML.

AML: Cytogenetics Determines Survival

Risk Status Based on Cytogenetic and Molecular Abnormalities

Risk Status	Cytogenetics	Molecular Abnormalities
Better-risk	inv(16) or t(16;16) t(8;21) t(15;17)	Normal cytogenetics: NPM1 mutation in the absence of FLT3-ITD or isolated biallelic CEBPA mutation
Intermediate-risk	Normal cytogenetics +8 alone t(9;11) Other non-defined	t(8;21), inv(16), t(16;16): with c-KIT mutation
Poor-risk	Complex (\geq 3 clonal abnormalities) Monosomal karyotype -5, 5q-, -7, 7q- 11q23 – non t(9;11) inv(3), t(3;3) t(6;9) t(9;22)	Normal cytogenetics: with FLT3-ITD mutation

Phases of Leukemia Therapy

Induction

Cytarabine + anthracycline

Postremission

- Consolidation chemotherapy
- Hematopoietic cell transplantation (HCT)
- Maintenance therapy

Treatment Outcome by Age

Age	< 56 yo	56-65 yo	66-75 yo	>75 yo
No. of patients	368	246	274	80
Response, no. (%) CR Resistant disease	235 (64)	113 (46)	108 (39)	26 (33)
	99 (27)	91 (37)	101 (37)	29 (36)
Median survival, mo. (95% CI)	18.8	9.0	6.9	3.5
	(14.9-22.6)	(8.1-10.2)	(5.4-7.7)	(1.4-6.1)
Median DFS, mo.	21.6	7.4	8.3	8.9
(95% CI)	(15.8-25.5)	(658.8)	(6.3-10.2)	(5.8-10.8)

Appelbaum FR et al. Blood 2006; 107:3481-3485.

Managing Relapsed AML

Salvage Therapy for Relapsed AML

- No FDA-approved regimens
- Standard chemotherapy
 - High-dose cytarabine
 - Etoposide/mitoxantrone ± cytarabine (MEC)
 - Fludarabine/cytarabine/G-CSF ± idarubicin (FLAG-Ida)
 - Hypomethylating agents
- Investigational therapy
 - Antibodies, drug conjugates
 - Histone deacetylase inhibitors
 - Small molecule inhibitors (e.g., flt-3, IDH, etc.)
 - Others

Response to Salvage Chemotherapy for Relapsed AML

CR1 duration	< 1 year or 1° refractory	< 1 year or 1° refractory	1-2 years	> 2 years
# prior salvage attempts	<u>></u> 1	0	0	0
N	58	160	30	15
CR Rate	<1%	14%	47%	73%

Estey E et al. Blood 1996; 88:756.

Hematopoietic Cell Transplant Procedure

Conditioning Regimens for Allogeneic HCT

Bacigalupo A et al. Biol Blood Marrow Transplant 2009;15:1628-33.

Stem Cell Sources for Allogeneic HCT

- Sibling donor (HLA-matched)
- Matched unrelated donor
- Umbilical cord donor
- Haploidentical donor

Outcome of HCT in CR2

Foreman SJ, Rowe JM. *Blood* 2013; 121:1077-1082.

- OS after HCT in CR2 for patients 18-50 yo:
 - 6 m: ~80%
 - _ 12 m: ~70%
 - 2 y: ~60%

BUT:

- Only ~15% enter CR2, so OS for all patients is:
 - 6 m: ~12%
 - _ 12 m: ~10%
 - _ 2 y: ~10%

Impact of Disease Burden on HCT Outcomes

Disease burden	No. of patients	Median survival (mos.)	Median PFS (mos.)
Morphologic & cytogenetic remission	8	10.4	7.8
Morphologic remission only	6	4.6	2.9
Overt relapse	33	5.9	2.8

Kebriaei P et al. Bone Marrow Transplant 2005; 965-970.

Effect of TBI Dose on HCT Outcomes

Relapse Probability

Mortality Probability

Clift RA et al. Blood 1990; 76:1867-71.

Relationship Between BM Dose and Relapse

Rationale for RIT in HCT Regimens

- AML is highly radiosensitive.
- TBI is effective in HCT regimens at high doses.
- TBI <u>cannot</u> be safely dose escalated.
- RIT can increase radiation doses to leukemia cells and normal bone marrow without increasing doses to normal tissues.
- Iomab-B consists of an anti-CD45
 mAb that targets lymphohematopoietic cells and the β-particle
 emitting radionuclide ¹³¹I.

lomab-B Biodistribution

Treatment at MTD (24 Gy to liver) delivers ~36 Gy to marrow and ~100 Gy to spleen.

Outcomes after Iomab-B at MTD

Pagel JM et al. Blood 2009; 114:5444-5453.

Compelling Results Enable Pivotal Phase III Trial

- Complete response rate: 100%
- Engraftment by Day 28: 100%
- Transplant related mortality:
 14% (same as RIC)

- Non-relapse mortality (NRM):
 - Day 100: 10%
 - Overall: 20% (46% with myeloablative conditioning)

N = Number of patients treated lomab-B results from FHCRC clinical trials Current BMT and Chemotherapy results from MD Anderson outcomes analysis.

Iomab-B Pivotal Trial Schema

Bone marrow aspirate and biopsy performed in all patients at ~1 and/or 2 months after the last day of intervention to determine response and at 6 months after CR has been established to confirm CR duration in groups labeled with ■.

Conclusions

- Poor response and toxicity of conventional salvage chemotherapy are barriers to HCT.
- Iomab-B can potentially increase anti-leukemic effects of conditioning without added toxicity.
- Phase III study will address whether RIT-based conditioning for HCT is superior to conventional management for relapsed/refractory AML.