Window of opportunity trial of HPV E7 antigen-expressing Listeria-based therapeutic vaccination prior to robotic surgery for HPV-positive oropharyngeal cancer

Brett Miles1, Sacha Grjatic1, Michael Donovan2, Eric Genden1, Krzysz Misliukiewicz2, Rosemarie Krupat4, Yvonne Saenger5, Elizabeth G. Demicco3, Marshall Posner2, Andrew G. Sikora1

1Department of Otolaryngology, Mount Sinai School of Medicine, New York, NY, USA; 2Division of Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA; 3Division of Pathology, Mount Sinai School of Medicine, New York, NY, USA; 4Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA

Introduction

In the USA, the prevalence of human papillomavirus (HPV)-associated oropharyngeal cancer (HPVOPC) is increasing [225% from 1988 to 2004].1,2

- Patients tend to be younger and have a favorable prognosis, with a 69% reduction in the risk of death compared with HPV-negative patients.1,2
- Most HPVOPC patients present with advanced stage, and standard chemoradiation regimens can be associated with significant toxicity.3
- It is a paradox of treatment that patients who have a good prognosis are at risk of therapy-related long-term poor quality-of-life outcomes.

Immunotherapy has the potential to reduce toxicity through de-escalation of chemoradiation regimens, and potentially enhance long-term disease control.

- *Listeria monocytogenes* (Listeria]tio-synthetic O [LLO] immunotherapies have been shown to generate antigen-specific T-cell responses and neutralize Tregulatory (Treg) and myeloid-derived suppressor cells (MDSCs) that protect the tumor microenvironment against immunologic attack (Figure 1).4
- **ADXS11-001** is an attenuated, genetically modified Lm vector that secretes an HPV-E7 tumor antigen as LLO-E7 fusion protein; LLO refers to the truncated form of non-hemolytic LLO protein.5
- **ADXS11-001** can be combined with different treatment modalities, and data in cervical cancer support potential clinical benefit.6-7

We hypothesize that **ADXS11-001** neoadjuvant immunotherapy will induce a robust HPV-specific cytotoxic T-lymphocyte (CTL) response in the blood and tumor of HPVOPC patients who are vaccinated prior to surgery.

Methods

Window of opportunity, non-randomized, single-arm phase 2 trial of neoadjuvant ADXS11-001 treatment before standard of care transoral robotic surgery (TORS) in patients with stage II-IV HPVOPC (NCT02002182; Figure 2).

- Patients in the ADXS11-001 treatment arm (study arm) will be enrolled according to a Simon's two-stage design.
- **Initial cohort of 9 patients** enrolled before preliminary analysis, and a subsequent cohort of 13 patients enrolled if statistical criteria are met.
- **ADXS11-001** will be administered as an intravenous infusion at a dose of 1x107 colony forming units (CFUs) at Days 1 and 15.
- Ibuprofen, diphenhydramine, and an antiemetic will be given before infusion, with ibuprofen also administered after infusion; a course of amoxicillin (or alternative antibiotic) will be administered 72 hours after each ADXS11-001 dosing.
- An observational arm of up to 10 patients, who will undergo TORS without previous treatment with ADXS11-001, will also be enrolled.
- Standard of care TORS will be performed in all patients.
- Adjuvant radiation/chemoradiation will be as per standard of care (4-6 weeks after TORS).
- Blood, tumor specimens, and tumor-infiltrating lymphocytes will be collected at different time points from study patients (Figure 2), and processed and stored prior to analysis.

Figure 1. Step by step Lm-LLO immunomodulation

1. APCs are genetically altered so they do not have the body
2. The bacilli are further modified to develop a vector targeting the specific tumor of interest
3. The lmx1-measured can vector the LLO-E7 fusion protein
4. The iSOI vector contains the tumor-specific immune signature
5. The TME contains in vivo the tumor-invasive signature
6. The TME contains the tumor-invasive signature
7. The programmed CTLs will enter into the tumor and destroy the tumor cells

Objectives

To determine the immunogenicity of **ADXS11-001** treatment in patients with stage II-IV HPV-positive squamous cell carcinoma of the oropharynx.

- Primary endpoint: change from baseline in HPV-specific CD8+ CTL responses in peripheral blood at the time of surgery.
- Secondary endpoint: change in HPV-specific CD8+ CTL responses in peripheral blood at various time points after surgery.
- Exploratory endpoint: changes in the profile of tumor-infiltrating effector (natural killer [NK] cells, CD4+ and CD8+ T cells) and suppressor (Treg and MDSCs) immunocytes.

To evaluate the tolerability, safety, and nature and degree of **ADXS11-001** toxicity in patients with HPVOPC.

Key inclusion criteria

- Adult patients (≥18 years) with newly diagnosed, biopsy proven, stage II-IV HPVOPC.
- Eligible to undergo TORS with or without neck dissection.
- Eastern Cooperative Oncology Group performance status ≤ 2.
- Able to understand and give informed consent.

Key exclusion criteria

- Active cancer at another site, or history of cancer in the past 3 years.
- Prior systemic chemotherapy or radiotherapy.
- Immunosuppressive condition, or taking immunosuppressive medication.
- Liver disease or other medical contraindication to study medications.

Blood and tumor assessments

- Blood and tumor analyses include immunophenotyping and characterization of HPV-specific T-cell responses in blood, seroreactivity to HPV and cancer-testant antigens in blood, and immunophenotyping and molecular profiling of tumor tissue (summarized in Table 1).
- Tissue-based changes will be correlated with comprehensive analysis of immune changes in peripheral blood.

Table 1. Laboratory studies

<table>
<thead>
<tr>
<th>Assay</th>
<th>Questions to be answered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISPOT for HPV-negative T-cells in peripheral blood</td>
<td>Does ADXS11-001 induce robust systemic antigen-specific immunity?</td>
</tr>
<tr>
<td>IHC/IF for tumor-infiltrating CD8+ T-cells and other immunocytes</td>
<td>Do ADXS11-001 induced T-cells penetrate the tumor? Is the overall balance of suppressor and effector immune cells in the TME improved after treatment?</td>
</tr>
<tr>
<td>Immunophenotyping of suppressor and effector immune cell subsets in blood by flow cytometry</td>
<td>Does ADXS11-001 improve the systemic balance of suppressor and effector immunocytes?</td>
</tr>
<tr>
<td>Seroreactivity to HPV antigens and HNSCCA-associated cancer-testant antigens in blood</td>
<td>Does targeting a foreign viral antigen (E7) lead to epitope spreading and induction of a broad-based response to self-derived tumor antigens?</td>
</tr>
<tr>
<td>Immune gene expression signatures in TME by Nanostring</td>
<td>Is ADXS11-001 associated with an “immune response signature” of altered gene expression? Can we identify potential molecular targets for combination therapy?</td>
</tr>
<tr>
<td>Multiplex serum cytokine and soluble immunomodulator levels by Luminex analysis</td>
<td>Does ADXS11-001 induce a durable inflammatory/cytokine signature?</td>
</tr>
<tr>
<td>Tcell receptor diversity profiling by Immunoseq</td>
<td>How does ADXS11-001 treatment affect the depth and breadth of the tumor-infiltrating T-cell repertoire?</td>
</tr>
</tbody>
</table>

Statistical considerations

- The trial is designed to conclude that **ADXS11-001** treatment is highly immunogenic and worth further investigation if post-treatment T-cell responses in peripheral blood at least two-fold greater than pretreatment baseline response are observed in ≥ 75% of patients.

Trial status

- This phase 2 study is open and actively enrolling at Icahn School of Medicine at Mount Sinai, NY, USA [Site PI Brett Miles]. The IND for this study is held by the Baylor College of Medicine (FDA IND#15688, PI Andrew Sikora).
- Eight of a maximum of 22 **ADXS11-001** treated patients and 2 of a maximum of 10 observational patients have been enrolled to date.

References

Acknowledgments

The authors would like to acknowledge the patients participating in this study, as well as support staff including Pang Herrera and Risa Baku. Advaxis provides **ADXS11-001** and unrestricted research funds to support this trial. Editorial and medical writing assistance was provided by Sandra Mendez, PhD, CMM, TRM Oncology, The Netherlands, funded by Advaxis. The authors are fully responsible for all content and editorial decisions for this poster.

Disclosures

Brett Miles: Site PI Advaxis Trial, no salary support. Sacha Grjatic, Michael Donovan, Eric Genden, Krzysz Misliukiewicz, Rosemarie Krupat, Yvonne Saenger, Elizabeth G. Demicco, and Marshall Posner have no potential conflicts of interest to disclose. Andrew G. Sikora receives unrestricted research funding from Advaxis to support this clinical trial.