ABSTRACT
A novel method to quantify proliferation as a means to assess cell cycle dysregulation in Alzheimer’s disease subjects was developed. The LymPro Assay (LPA) provides a clinical performance/ validation data that supports the ability of this technology to stratify AD patients relative to PDD patients with the use of whole blood in a non-invasive manner. The LPA is an FDA-approved analysis to discriminate between AD and PDD patients based on an in-house clinical laboratory study performed at LymPro Technology, LLC.

RESULTS

Figure 1: Multivariate Scoring Model for differentiating AD and PDD. Shows scores of CD19+ CD4+ and CD19+ CD8+ as an example of PSS and AD, respectively.

Figure 2: Time: Control Samples. Assessed external PSS expression using somatic variants of the Lymphocyte Sub-population (LSP) markers. CD3+ cells in both PSS samples. (3) is in bold class predicted above.

Table 1: Clinical performance of the LymPro Assay using a whole blood sample in the clinical laboratory study performed at LymPro Technology, LLC. Red blood cells are counted in whole blood. Reduced 2 mmol/L were filtered for non-AD or non-AD+ samples. CD4, CD8, and CD19 markers were measured using the CD69 ion marker.

METHODS

One of the key findings of this study was that the LPA was able to discriminate between AD and PDD patients using whole blood samples. The assay was developed to assess cell cycle dysregulation in AD and PDD patients.

CONCLUSIONS

The LPA is a novel technology that can be used to discriminate between AD and PDD patients using whole blood samples. The assay is FDA-approved and provides clinical performance/validation data that supports the ability of this technology to stratify AD patients relative to PDD patients based on an in-house clinical laboratory study performed at LymPro Technology, LLC.

Figure 3: Time: Control Samples. Assessed external PSS expression using somatic variants of the LSP markers. CD3+ cells in both PSS samples. (3) is in bold class predicted above.

Table 1: Clinical performance of the LymPro Assay using a whole blood sample in the clinical laboratory study performed at LymPro Technology, LLC. Red blood cells are counted in whole blood. Reduced 2 mmol/L were filtered for non-AD or non-AD+ samples. CD4, CD8, and CD19 markers were measured using the CD69 ion marker.

METHODS

One of the key findings of this study was that the LPA was able to discriminate between AD and PDD patients using whole blood samples. The assay was developed to assess cell cycle dysregulation in AD and PDD patients.

CONCLUSIONS

The LPA is a novel technology that can be used to discriminate between AD and PDD patients using whole blood samples. The assay is FDA-approved and provides clinical performance/validation data that supports the ability of this technology to stratify AD patients relative to PDD patients based on an in-house clinical laboratory study performed at LymPro Technology, LLC.

Figure 3: Time: Control Samples. Assessed external PSS expression using somatic variants of the LSP markers. CD3+ cells in both PSS samples. (3) is in bold class predicted above.

Table 1: Clinical performance of the LymPro Assay using a whole blood sample in the clinical laboratory study performed at LymPro Technology, LLC. Red blood cells are counted in whole blood. Reduced 2 mmol/L were filtered for non-AD or non-AD+ samples. CD4, CD8, and CD19 markers were measured using the CD69 ion marker.

METHODS

One of the key findings of this study was that the LPA was able to discriminate between AD and PDD patients using whole blood samples. The assay was developed to assess cell cycle dysregulation in AD and PDD patients.

CONCLUSIONS

The LPA is a novel technology that can be used to discriminate between AD and PDD patients using whole blood samples. The assay is FDA-approved and provides clinical performance/validation data that supports the ability of this technology to stratify AD patients relative to PDD patients based on an in-house clinical laboratory study performed at LymPro Technology, LLC.

Figure 3: Time: Control Samples. Assessed external PSS expression using somatic variants of the LSP markers. CD3+ cells in both PSS samples. (3) is in bold class predicted above.

Table 1: Clinical performance of the LymPro Assay using a whole blood sample in the clinical laboratory study performed at LymPro Technology, LLC. Red blood cells are counted in whole blood. Reduced 2 mmol/L were filtered for non-AD or non-AD+ samples. CD4, CD8, and CD19 markers were measured using the CD69 ion marker.