Pharmacokinetic-pharmacodynamic Effects of Sublingual Apomorphine (APL-130277) for the Acute Management of OFF Episodes in Parkinson's Disease Patients

Jordan Dubow¹, MD; Bruce Dzynel¹; Thierry Bilbault¹, PhD; Anthony Giovinazzo¹; Albert Agro¹, PhD
¹Cynapsus Therapeutics, Toronto, Ontario, Canada

Presented at the American Neurological Association 2015 Annual Meeting • Chicago, IL, United States • September 27 – 29, 2015

BACKGROUND
- Parkinson's disease (PD) patients suffer from a variety of OFF episodes as the disease progresses.
 - These consist of unpredictable wearing OFF, morning akinesia, delayed or no ON or sudden OFF.
 - Up to 2/3 of all PD patients across all stages of the disease experience OFF episodes, which have a significant negative impact on quality of life.
- OFF episodes can be reduced by increasing the frequency of levodopa by adding other adjuvant PD medications; however, medication manipulation does not address morning akinesia, delayed ON, no ON or sudden OFF.
- Despite current PD medications, PD patients suffer many OFF episodes daily.

OBJECTIVE
To evaluate the pharmacokinetic-pharmacodynamic effects of APL-130277 on OFF episodes in PD Patients

METHODS
- This was a phase 2, open-label, multi-center, single-arm study.
- The primary efficacy endpoint was the percent of patients turning fully ON following APL-130277 administration.
- Secondary endpoints included efficacy and safety endpoints.
- APL-130277 is a soluble film strip of apomorphine administered sublingually and designed as a "Turning ON" medication to immediately manage OFF episodes by rapidly delivering apomorphine through absorption from the oral cavity mucosa.
- This analysis summarizes the pharmacokinetic-pharmacodynamic effects of sublingual apomorphine (APL-130277) starting with 10 mg. If a full ON, as assessed by clinical criteria, was maintained for at least 30 min, patients could be dosed up to the maximum dose of 30 mg.
- Of the 19 total patients dosed with APL-130277, 15 achieved a full ON response within 30 min, and approximately half within 15 min.
- Mean ON duration was 52 min.
- Of the 4 Non-responders, 2 were dosed incorrectly and were dosed up to the maximum dose of 30 mg.
- Of the 8 patients with pharmacokinetic analyses, 6 achieved a full ON response (Responders).
- All turned fully ON within 30 min and 2 within 15 min.
- Mean apomorphine concentration for the 6 responders at the dose they achieved a full ON for the 2 Non-responders (did not achieve a full ON on all doses tested (10, 15, 20, 25 and 30 mg)) are presented in Figure 2.
- The mean apomorphine concentration when Responders went from OFF to full ON was 2.04 ng/ml (range 0.96–3.77), defined as the minimum effective concentration (MEC).
- The mean apomorphine concentration for the Non-responders did not reach the minimum effective concentration threshold at all doses tested.

RESULTS
- Of the 19 total patients dosed with APL-130277, 15 achieved a full ON response within 30 min, and approximately half within 15 min.
- Mean ON duration was 52 min.
- Of the 4 Non-responders, 2 were dosed incorrectly and were dosed up to the maximum dose of 30 mg.
- Of the 8 patients with pharmacokinetic analyses, 6 achieved a full ON response (Responders).
- All turned fully ON within 30 min and 2 within 15 min.
- Mean apomorphine concentration for the 6 responders at the dose they achieved a full ON for the 2 Non-responders (did not achieve a full ON on all doses tested (10, 15, 20, 25 and 30 mg)) are presented in Figure 2.
- The mean apomorphine concentration when Responders went from OFF to full ON was 2.04 ng/ml (range 0.96–3.77), defined as the minimum effective concentration (MEC).
- The mean apomorphine concentration for the Non-responders did not reach the minimum effective concentration threshold at all doses tested.

CONCLUSIONS
- APL-130277 can rapidly convert a patient from the OFF to the ON state.
- On average, a minimum effective apomorphine concentration of 2.04 ng/ml was needed to turn a patient fully ON, lower than what has previously been reported with apomorphine.
- Of those patients who turned fully ON after APL-130277 administration, the minimum effective concentration was reached in 10–20 min and levels were maintained above this threshold for 30 min after dosing.
- The data above show the minimum effective concentration threshold translated into sustained improvement in motor function and ON time.
- Patients who did not turn ON following APL-130277 administration did not reach the minimum effective concentration.
- Thicker concentrations related to a full ON may be lower than those needed for a full ON with subcutaneous apomorphine.
- APL-130277 was safe and well-tolerated; almost all AEs were mild and occurred within 2 hours of dosing.
- APL-130277 appears to be a safe and effective treatment for the on-demand management of OFF episodes in PD patients.

ACKNOWLEDGEMENTS
This study was supported by Cynapsus Therapeutics. Additionally, the Michael J. Fox Foundation for Parkinson’s Research provided a grant in support of the study. JF, JD, TB, AG and AEA are all employees of Cynapsus Therapeutics and have stock or stock options. Peter Gardzinski, Emily Cohen, Gazel Vitali and Louis Lau of Cynapsus Therapeutics provided assistance in the development of this publication. APL-130277 is currently an investigational product in some countries, including the United States.

REFERENCES

Figure 1: APL-130277 sublingual apomorphine strip

Figure 2: Mean plasma apomorphine concentration for Responders vs. Non-responders

Table 1: Baseline demographics

Table 2: Number of patients N (%), N=8

Table 3: Most common Adverse Reactions

Figure 3: MDS-UPDRS Part III changes for Responders vs. Non-responders

Figure 4: Percent MDS-UPDRS Part III change for Responders vs. Non-responders