LGD-6972: Glucagon Receptor Antagonist

Highly Potent, Orally-Bioavailable, Small Molecule Glucagon Receptor Antagonist for the Treatment of Type 2 Diabetes
Overview

• Diabetes is one of the largest and fastest growing medical markets with major growth projected for future need
 — $33 billion worldwide annual sales in 2012
 — Estimated to grow to $60+ billion by 2020
• Despite existing therapies, significant need for novel mechanism to improve glycemic control
• Glucagon Receptor Antagonists may provide an effective treatment for Type 2 Diabetes Mellitus either alone or in combination with other anti-diabetic drugs
• Clinically validated mechanism
• LGD-6972 is a novel, highly potent and selective Glucagon Receptor antagonist with an attractive preclinical profile
Diabetes: Significant Health Issue

- 371 million people worldwide with diabetes
 - 25.8 million in U.S., 8.3% of population
 - 1.9 million Americans diagnosed with diabetes every year
 - 90-95% of cases have Type 2 diabetes

- Diabetes is leading cause of kidney failure, non-traumatic lower-limb amputations and new cases of blindness among adults in U.S.
 - 7th leading cause of death, with over 71,000 deaths in U.S. each year
 - Will be 7th leading cause of deaths worldwide by 2030
 - More deaths per year from diabetes than breast cancer and AIDS combined

- $245 billion annually attributable to diagnosed diabetes in U.S.
 - $176 billion in direct costs and $69 billion in indirect costs (disability, work loss, premature mortality)

Glucagon Antagonists: Opportunity

• Large patient population with diabetes
 — Despite availability of multiple medications and practice of combination therapy, the majority of T2DM patients fail to achieve glycemic goals
 — New diabetes drugs, DPPIV inhibitors and GLP-1, are under scrutiny for potential risks of pancreatitis and thyroid cancer

• GCGR antagonists are expected to be effective across a broad population of patients with T2DM
 — Lean and obese T2DM patients with elevated hepatic glucose production
 — Advanced T2DM patients with increased glucagon-to-insulin ratio
 — Increased GLP-1 levels may benefit beta cell function

• $33B market for novel therapeutics in 2012, projected to grow to over $60B in 2020
 — Possible that 20% of market in 2020 could be from novel MOAs

Source: Brinson Patrick MNKD report 12/3/12; SunTrust LLY report 6/25/13
Significant Opportunity for Branded Therapies

$Billions

Source: Thomson Reuters, annual reports
LGD-6972: Glucagon Receptor Antagonist

Scientific Background

- Glucagon, acting on its receptor, increases glucose production by opposing the actions of insulin
- In type 2 diabetes, high levels of glucagon exacerbate hyperglycemia
- Reducing glucagon action markedly lowers plasma glucose and triglycerides
- Applicability for both fasting and post-prandial hyperglycemia
LGD-6972: Pre-Clinical Profile

- Highly potent and selective antagonist of the human glucagon receptor (hGCGR)
 - IC50 ~ 1 nM
- Potent and efficacious in animal models of T2DM and T1DM
- Good oral bioavailability and low clearance rate in animals predict low, once-a-day dose in humans
- No safety issues observed in preclinical GLP safety pharmacology or genotoxicity core batteries (ICH guidance S7A and S2(R1))
- Well tolerated with large safety margin in 28-day GLP toxicity studies in rat and monkey
- Efficient scale-up route developed and GMP API manufactured
LGD-6972: *In Vitro* Pharmacology

- Highly potent glucagon receptor binding
- Potent antagonist in functional assay
 - More potent in primates vs. rodents
- Selective activity vs. related GPCRs

GCGR Inhibition Across Species

<table>
<thead>
<tr>
<th>Species</th>
<th>cAMP IC$_{50}$ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>0.5</td>
</tr>
<tr>
<td>Monkey</td>
<td>0.7</td>
</tr>
<tr>
<td>Rat</td>
<td>103</td>
</tr>
<tr>
<td>Mouse</td>
<td>150</td>
</tr>
</tbody>
</table>

Selectivity vs. Related Receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>cAMP IC$_{50}$ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGCGR</td>
<td>0.5</td>
</tr>
<tr>
<td>hGLP-1R</td>
<td>>10,000</td>
</tr>
<tr>
<td>hGIPR</td>
<td>3,000</td>
</tr>
</tbody>
</table>

American Diabetes Association (ADA) 72nd Scientific Sessions; Philadelphia, PA, USA; June 8-12, 2012
LGD-6972: Antagonism of Glucagon Action

LGD-6972 demonstrates high potency in antagonizing hGCGR

Glucagon Displacement
(Recombinant hGCGR)

cAMP & Glucose Production
(Human Hepatocytes, 0.1 nM Glucagon)

LGD-6972 EC\textsubscript{50} = 0.5 nM

LGD-6972 IC\textsubscript{50} = 5.0 nM

LGD-6972 IC\textsubscript{50} = 11 nM
LGD-6972: Acute *in vivo* Glucagon Antagonism

- SD Rats and cynomolgus monkeys dosed p.o. with LGD-6972
- Animals injected with glucagon
- Glucagon-induced elevation of glucose blocked by LGD-6972
 - More potent activity observed in monkey
 - Consistent with in vitro cAMP assay

Rat

Monkey

American Diabetes Association (ADA) 72nd Scientific Sessions; Philadelphia, PA, USA; June 8-12, 2012
LGD-6972: Pharmacokinetics

- Good oral bioavailability, slow clearance, and long terminal half-life in multiple species
- Predicted long half-life in humans based on microsomal stability
 - Projections for human dose are very low (2 mg – 30 mg)
 - Lilly glucagon receptor antagonist LY2409021 efficacious starting at 10 mg

<table>
<thead>
<tr>
<th>Dose (mg/kg, po)</th>
<th>C<sub>max</sub> (µg/mL)</th>
<th>T<sub>max</sub> (hr)</th>
<th>AUC<sub>last</sub> (µg·h/mL)</th>
<th>t<sub>1/2</sub> (hr)</th>
<th>F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>3</td>
<td>1.71</td>
<td>6.0</td>
<td>16.3</td>
<td>5.9</td>
</tr>
<tr>
<td>Rat</td>
<td>3</td>
<td>1.33</td>
<td>2.0</td>
<td>7.6</td>
<td>10.9</td>
</tr>
<tr>
<td>Dog</td>
<td>3</td>
<td>10.9</td>
<td>9.0</td>
<td>225.0</td>
<td>>24</td>
</tr>
<tr>
<td>Monkey</td>
<td>3</td>
<td>1.10</td>
<td>4.5</td>
<td>9.3</td>
<td>14.9</td>
</tr>
</tbody>
</table>
LGD-6972: PK-PD Relationship

- db/db mice dosed p.o. with LGD-6972
- PK and glucose monitored over 24h interval
- Significant glucose reduction corresponding to plasma concentration of LGD-6972

Glucose Reduction in db/db Mice

![Graph showing glucose reduction over time for different treatments.]

Plasma LGD-6972 Exposure in db/db Mice

![Graph showing plasma concentration over time for different treatments.]

American Diabetes Association (ADA) 72nd Scientific Sessions; Philadelphia, PA, USA; June 8-12, 2012
LGD-6972: Chronic glucose reduction in T2DM model

- db/db mice dosed p.o. with LGD-6972
- Glucose monitored weekly for 28 days
- Sustained glucose reduction throughout experiment

American Diabetes Association (ADA) 72nd Scientific Sessions; Philadelphia, PA, USA; June 8-12, 2012
LGD-6972: Glucose Reduction in T1DM Model

- Mice injected with streptozotocin, a beta cell toxin
- Mice dosed p.o. with LGD-6972 after hyperglycemia established
- Significant glucose reduction observed through 28 days

Vajda, et al., American Diabetes Association 73rd Scientific Sessions; Chicago, IL; June 21-25, 2013
LGD-6972: IND-enabling safety and toxicity studies

• No genotoxicity observed in IND-enabling GLP studies
 — Ames Assay
 — CHO cell chromosomal aberration assay
 — In vivo rat micronucleus assay

• No safety pharmacology observations in IND-enabling GLP studies
 — Respiratory safety pharmacology in rats
 — CNS safety pharmacology in rats
 — In vitro hERG patch clamp assay
 — CV safety pharmacology in monkeys

• Well tolerated in 28-day rat and monkey GLP toxicity studies
 — Robust safety margin between NOAEL and efficacious dose
LGD-6972: CMC

- Efficient API manufacturing route has been developed and sufficient drug substance available
 - GMP API synthesized as sodium salt from readily available starting materials
 - Efficient, 6-step synthetic pathway for API

- GMP API made and released sufficient to complete Phase I SAD and MAD studies
LGD-6972: Intellectual Property

- LGD-6972 is covered by two composition-of-matter patent families
 - Nominal patent terms last until 2028-2029 (subject to PTA and terminal disclaimers)
 - Claims allowed or granted in US, Europe and Japan; applications also pending in China, Korea, India, Canada, Mexico, Australia and Brazil
Phase I Clinical Trial Design

- Double-blind, placebo-controlled, randomized ascending single oral dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of LGD-6972 in healthy subjects and subjects with Type 2 Diabetes (“T2DM”)
- Enrollment planned for 56 participants with 48 healthy subjects and 8 subjects with T2DM
 - Six groups of healthy subjects and one group of subjects with T2DM
 - n=8 per group (6 LGD-6972 and 2 placebo subjects per group)
- Primary objective: Evaluate the safety and tolerability of single oral doses of LGD-6972 in healthy subjects and subjects with T2DM
- Phase I single-ascending dose study in progress, ClinicalTrials.gov identifier: NCT01919684
Summary

• Glucagon receptor antagonists represent a novel mechanism of action for patients with Type 2 Diabetes, a large, growing market with significant unmet need
• Glucagon receptor antagonism is a clinically-validated mechanism
• LGD-6972 fast follower to Lilly’s compound with potentially higher potency
• Commercial precedent for fast followers enjoying superior commercial success to lead program
• Ligand seeking traditional licensing deal comprised of milestones and royalties with experienced partner possessing significant development and commercialization capabilities