
United States Patent

US007143444B2

(12) (10) Patent N0.: US 7,143,444 B2
Porras et a]. (45) Date of Patent: Nov. 28, 2006

(54) APPLICATION-LAYER ANOMALY AND 6,947,726 B1* 9/2005 Rockwell 455/411

MISUSE DETECTION 7,017,185 B1* 3/2006 Wiley et al. 726/23

7,017,186 B1* 3/2006 D 726/23
(75) Inventors: Phillip Andrew Porras, Cupertino, CA 7 028 228 131* 40006 ay

(US); Magnus Almgren, Mountain ’ ’
View CA Ulf E_ Lindqvist 2003/0145226 A1 7/2003 Bruton, III et al. 713/201

Moufnain View: CA (Us); steven’Mark 2003/0172166 A1 9/2003 Judge et a1. 709/229
Dawson, Menlo Park, CA (US)

(73) Assignee: SRI International, Menlo Park, CA
(Us) FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this W0 03/077071 9/2003
patent is extended or adjusted under 35
USC 154(b) by 923 days.

(21) Appl. No.: 09/996,154 OTHER PUBLICATIONS

(22) Filed; N0“ 28, 2001 Almgren, et al., “A Lightweight Tool for Detecting Web Server
Attacks,” Network and Distributed Systems Security (NDSS 2000)

(65) Prior Publication Data Symposium Proceedings, 157-170, 2000.
Al tl.“Al't'-It tdDtCllt' fS -

Us 2003/0101358 A1 May 29’ 2003 ritynifliiiigrilng,” 1231111210222”? jgdriaitcesaii [Zr/22710315517253”
(51) Int Cl (RAID 2001), Springer, Davis, California, Oct. 2001, p. 22-36.

I I Daniels, et a1., “A Network Audit System for Host-Based Intrusion

52 IGJOS6FC$IVOO (20060;;6/30 72605 72604 Detection (NASHID) in Linux,” 16th Annual Computer Security
() ' ' ' """"""""""""" " ’ ’ _ ’ Application Conference (ACSAC‘00) Dec. 11-15, 2000, New

726/11, 726/4 Orleans, LA‘
(58) Field of Classi?cation Search 726/23,

726/25, 26, 30, 29, 28, 27, 24, ll, 5 (Continued)
See application ?le for complete search history. _ _ _

rzmar xammeri orman . r1 P yE N M W ght
(56) References Cited (74) Attorney, Agent, or F irmiKin-Wah Tong, Esq.;

U.S. PATENT DOCUMENTS

5,440,723 A 8/1995 Arnold et al. 395/181

5,557,742 A * 9/1996 Smaha et al. 726/22
5,748,098 A 5/1998 Grace 380/825.76

6,275,942 B1 * 8/2001 Bernhard et al. 726/22

6,477,651 B1* 11/2002 Teal 726/23

6,546,493 B1 * 4/2003 Magdych et al. 726/25
6,553,378 B1* 4/2003 Eschelbeck 707/10

6,681,331 B1* 1/2004 Munson et al. . 726/23
6,704,874 B1 * 3/2004 Porras et al. 726/22

6,826,697 B1* 11/2004 Moran 726/23

6,839,850 B1 * 1/2005 Campbell et a1. 726/23

Patterson & Sheridan, LLP

(57) ABSTRACT

A method includes passing a request for data received by a
?rst server process executing in a ?rst server to a detection
process that includes packing a subset of the data into an
analysis format and passing the subset to an analysis pro
cess.

21 Claims, 5 Drawing Sheets

US 7,143,444 B2
Page 2

OTHER PUBLICATIONS

Daniels, “Identi?cation of Host Audit Data to Detect Attacks on
Low-Level IP Vulnerabilities,” J. Computer Security, 7(1): 3-35,
1999.
Dayioglu, “APACHE Intrusion Detection Module,” http://yunus.
hacettepe.edu.tr/~buraldmodiid/, Date Unknown, Downloaded
Nov. 10, 2003.
Hollander, Y., “The Future of Web Server Security: Why your Web
site is still vulnerable to attack,” http://www.cgisecurity.com/lib/
wpfuturepdf, allegedly posted 2000.
Lindqvist, et al., “eXpert-BSM: A Host-based Intrusion Detection
Solution for Sun Solaris,” Proc. 17th Annual Computer Security

Application Conference, p. 240-251, New Orleans, LA, Dec. 10-14,
2001.
Munson, et al., “Watcher: The Missing Piece of the Security
Puzzle,” Proceedings of the 17th Annual Computer Security Appli
cations Conference (ACSAC‘01), Dec. 10-14, 2001, New Orleans,
LA, pp. 230-239, IEEE Press.
Porras et al, “EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances,” 20Lh NISSC4Oct. 9, 1997, p.
353-365.
Tener, “AI and 4GL: Automated Detection and Investigation Tools”,
Proceedings of the IFIP Sec. ’88, Australia, 1989, pp. 23-29.

* cited by examiner

U.S. Patent Nov. 28, 2006 Sheet 1 0f 5 US 7,143,444 B2

U.S. Patent

6/0 Pavia

39

9””

Nov. 28, 2006 Sheet 2 0f 5 US 7,143,444 B2

K m K

25
r

W

17/ S, 5M8)’ A fi?i‘byi“
S 5 Rugs 5 O J" {Mimi

K W
L Ly, i L
2% 60 Q: “L 5,‘!

U.S. Patent Nov. 28, 2006 Sheet 3 0f 5 US 7,143,444 B2

[/37

Fig.3

U.S. Patent Nov. 28, 2006 Sheet 4 0f 5 US 7,143,444 B2

// / /'

U.S. Patent Nov. 28, 2006 Sheet 5 0f 5 US 7,143,444 B2

2/ 3/

mire]

gk'fmd' / {OF/
geld/W
Evita.»

pate/é [n'Fa' (0
ammém/ ‘T,

ii.” glad/I08
17mm] 1;; P996

US 7,143 ,444 B2
1

APPLICATION-LAYER ANOMALY AND
MISUSE DETECTION

REFERENCE TO GOVERNMENT FUNDING

This invention Was made With Government support under
Contract Numbers F30602-98-C-0059 and F30602-99-C
0149, both contract awarded by DARPA. The Government
has certain rights in this invention.

TECHNICAL FIELD

This invention relates to application-layer anomaly and
misuse detection.

BACKGROUND

Intrusion detection is a type of security management
system for computers and networks. An intrusion detection
system (IDS) gathers and analyzes information from various
areas Within a computer or a netWork to identify possible
security breaches, Which include both intrusions (attacks
from outside the organization) and misuse (attacks from
Within the organization). Intrusion detection typically uses
vulnerability assessment (sometimes referred to as scan
ning), Which is a technology developed to assess the security
of a computer system or netWork. Intrusion detection func
tions include: monitoring and analyzing both user and
system activities; analyzing system con?gurations and vul
nerabilities; assessing system and ?le integrity; ability to
recognize patterns typical of attacks; analysis of abnormal
activity patterns; and tracking user policy violations.

SUMMARY

In an aspect, the invention features a method including in
a server, hosting an intrusion detection process that provides
intrusion detection services and integrating the intrusion
detection process With a server process.

Embodiments may have one or more of the folloWing.
Integrating may include de?ning global application pro
grammer interface (API) structures in the intrusion detection
process to establish a connection to an application program
mer interface (API) of the server process.

The method may also include passing a request for data
received by the server to the intrusion detection process.

The intrusion detection process may include packing a
subset of the data into an analysis format and passing the
subset to an analysis process. The method may also include
analyzing the subset in the analysis process. The server may
be a Web server such as an Apache Web server.

The analysis process may reside in the Web server or
outside of the Web server.

Passing may also include delivering the subset in a
funneling process via a socket. The funneling process may
include accepting incoming connections to Which the subset
can be transmitting and passing the subset to outgoing
connections.

In another aspect, the invention features a method includ
ing passing a request for data received by a ?rst server
process executing in a ?rst server to a detection process that
includes packing a subset of the data into an analysis format
and passing the subset to an analysis process.

Embodiments may include one or more of the folloWing.
The method may further include analyzing the subset in the
analysis process.

20

25

30

35

40

45

50

55

60

65

2
Passing may include passing control from the ?rst server

through an Application Programming Interface (API) of the
?rst server program. The ?rst server may be a Web server.
The detection process may reside in the ?rst server. The
analysis process may reside in the ?rst server or in a second
server.

The analysis format may be an Emerald format and the
analysis process may be an Emerald expert analysis process.
The Web server may be an Apache Web server.
Passing may further include receiving the subset in a

piped logs interface of the Apache Web server and delivering
the subset to a funneling process via a socket.
The funneling process may include accepting incoming

connections to Which the subset can be transmitted and
passing the subset to outgoing connections. The funneling
process may further include duplicating the subset for deliv
ery to a second analysis process.

In another aspect, a system includes a Web server process
having an application programming interface (API) and an
intrusion detection process linked to the API.
Embodiments may include one or more of the folloWing.

The system may include a link to an external system having
an analysis process.
The intrusion detection process may include receiving a

request for data, packing a subset of the data into a common
analysis format, passing the subset to the analysis process,
and analyzing the subset in the analysis process.
The Web server process may be an Apache Web server

process.
The common analysis format may be an Emerald format

and the analysis process may be an Emerald analysis pro
cess.

Embodiments of the invention may have one or more of
the folloWing advantages.

Being part of the application, the application-integrated
intrusion detection process can access local variables that
are never Written to a log ?le, including intermediate results
When interpreting requests.
The Application-integrated intrusion detection process

can monitor hoW long it takes to execute a request, and
detect possible denial-of-service (DoS) attacks.

In a Web server, the Application-integrated intrusion
detection process can see an entire server request, including
headers. The Application-integrated intrusion detection pro
cess knoWs Which ?le Within the local ?le system the request
Was mapped to, and even Without parsing the con?guration
?le of the Web server, the it can determine if this program
Will be handled as a CGI script.
The Application-integrated intrusion detection process

generates feWer false alarms, as it does not have to guess the
interpretation and outcomes of malicious requests.
The Application-integrated intrusion detection process is

not hampered by encryption since it has access to the
de-crypted data from the application.
NetWork speed is not an issue since the Application

integrated intrusion detection process is part of the applica
tion and takes part in the normal cycle When analyzing
requests. Thus, the limiting factor is the application speed
rather than the netWork speed.

The Application-integrated intrusion detection process
may be pre-emptive. By being part of the application, the
Application-integrated intrusion detection process super
vises all steps of the request handling cycle and can react at
any time.

In the context of HTTP traf?c, a session is de?ned as a
single transaction including a request and a response. As the

US 7,143 ,444 B2
3

Application-integrated intrusion detection process is part of
the application, it automatically gets information about
sessions.

Other features and advantages of the invention will be
apparent from the description and drawings, and from the
claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows an intrusion detection network.
FIG. 2 shows the server system of FIG. 1.
FIG. 3 shows the application-integrated intrusion detec

tion process of FIG. 2.
FIG. 4 shows a ?ow diagram of a request processing loop

of an Apache web server.
FIG. 5 is a ?ow diagram of the application-integrated

intrusion detection process.

DETAILED DESCRIPTION

Referring to FIG. 1, an intrusion detection network 10
includes user systems 12, 14 and 16. Each of the user
systems 12, 14 and 16 is connected to a network of com
puters such as the Internet 18. A server system 20 and 22 are
linked to the Internet 18. An example server system is a web
server such as anApache web server (see www. apache.org).
In general, the servers 20 and 22 each execute a computer
program that provides services to other computer programs
in the same or other computers, such as user systems 12, 14
and 16. In a client/server programming model, each of the
server systems 20 and 22 executes a program that awaits and
ful?lls requests from client programs in the same or other
computers, such as the user systems 12, 14 and 16. Ful?ll
ment of a request is generally referred to as a response.

In the World Wide Web (“Web”), servers 20 and 22 are
referred to as Web servers. The Web server uses the client/
server model and the Web’s Hypertext Transfer Protocol
(HTTP) to serve ?les that form Web pages to Web users on
user systems 12, 14 and 16. Those user systems 12, 14 and
16 contain HTTP clients that forward the requests to the
servers. Popular Web servers are, for example, Microsoft’s
Internet Information Server (IIS), which comes with the
Windows NT server; Netscape FastTrack and Enterprise
servers; and Apache, a Web server for UNIX-based operat
ing systems. Other example Web servers include Novell’s
Web Server for users of its NetWare operating system, and
IBM’s family of Lotus Domino servers.

In the case of an Apache Web server, the Web server
program is Apache web server software. Apache web server
software is a freely available Web server computer program
that is distributed under an “open source” license. For
example, Version 2.0 runs on most UNIX-based operating
systems (such as Linux, Solaris, Digital UNIX, and AIX), on
other UNIX/POSIX-derived systems (such as Rhapsody,
BeOS, and BS2000/OSD), on AmigaOS, and on Windows
2000 from Microsoft.

Referring to FIG. 2, and using an Apache Web server as
an example, the server system 20 includes a computer 22.
The computer 22 is linked to the Internet 18 using TCP/IP
(Transmission Control Protocol/Internet Protocol) or
another suitable protocol. Computer 22 contains a processor
24 and a memory 26. Memory 26 stores an operating system
(“OS”) 28, a TCP/IP protocol stack 30 for communicating
over network 18, machine-executable instructions executed
by processor 24 to perform the Apache web server process
32, and machine-executable instructions to perform an
application-integrated intrusion detection process 34. Com

20

25

30

35

40

50

55

65

4
puter 22 may also include an input/output (I/ O) device 36 for
display of a graphical user interface (GUI) 38 to a user 40.
The Apache web server process 32 includes an API

(application programmer interface) 42. In general, an API is
a speci?c method prescribed for one application program by
which a programmer writing another application program
can make requests of the application having the API. Spe
ci?cally, the Apache API 42 allows third-party programmers
to add new Apache web server functionality. The applica
tion-integrated intrusion detection process 34 utiliZes the
Apache API 42. As is described below, using the Apache API
42 the application-integrated intrusion detection process 34
integrates intrusion detection at the application layer, e.g.,
with the web server process 32. Being part of the web server
application process provides the application intrusion detec
tion process 34 access local variables that are never written
to by a log ?le, including intermediate results when inter
preting results. Further, process 32 can monitor how long at
takes to execute a request and detect possible Denial-of
Service (DOS) attacks.

Referring now to FIG. 3, the application-integrated intru
sion detection process 34 is integrated to the web server
process 32 and includes a data collection process 50 that
interfaces with the Apache API 42 of the web server process
32 and an internal library store 52. The data collection
process 50 feeds an auxiliary communication process 52,
which is linked to a funneling process 56. The funneling
process 56 is linked to an analysis engine 58.

In operation, the web server process 32 passes control
through the API 42 to the data collection process 50 of the
application-integrated intrusion detection process 34 in a
logging phase (90 of FIG. 4 below) of an Apache request
processing loop. Apache breaks down request handling into
a set of phases, which are executed successively for each
incoming request. A module can choose to handle any of
these phases. When one writes a module for the Apache web
server, one de?nes global API structures in source code that
establish a connection to the server code during linking, thus
integrating the module with the web server process. In these
structures one can de?ne con?guration directives, which can
be used in a con?guration ?le of the server to customiZe the
module, and a handler function for each phase (also called
hooks) of the request processing.
Apache phases are handled by looking at each of a

succession of modules, looking to see if each of them has a
handler for the phase, and attempting invoking it if so. The
handler can typically do one of three things: handle the
request, and indicate that it has done so by returning the
magic constant OK; decline to handle the request, by retum
ing the magic integer constant DECLINED. In this case, the
server behaves in all respects as if the handler simply hadn’t
been there; or signal an error, by returning one of the HTTP
error codes. This terminates normal handling of the request,
although an ErrorDocument may be invoked to try to mop
up, and it will be logged in any case.
Most phases are terminated by the ?rst module that

handles them; however, for logging, ‘?xups’, and non
access authentication checking, all handlers always run
(barring an error). Also, a response phase is unique in that
modules may declare multiple handlers for it, via a dispatch
table keyed on the MIME type of the requested object.
Modules may declare a response-phase handler that can
handle any request, by giving it the key */* (i.e., a wildcard
MIME type speci?cation). However, wildcard handlers are
only invoked if the server has already tried and failed to ?nd
a more speci?c response handler for the MIME type of the
requested object (either none existed, or they all declined).

US 7,143 ,444 B2
5

At this point, We need to explain the structure of a module.
A CGI module is one example module. The Common
Gateway Interface (CGI) is a standard Way for a Web server
to pass a Web user’s request to an application program and
to receive data back to forWard to the user. When the user
requests a Web page (for example, by clicking on a high
lighted Word or entering a Web site address), the server
sends back the requested page. HoWever, When a user ?lls
out a form on a Web page and sends it in, it usually needs
to be processed by an application program. The Web server
typically passes the form information to a small application
program that processes the data and may send back a
con?rmation message. This method or convention for pass
ing data back and forth betWeen the server and the applica
tion is called the Common GateWay Interface (CGI). It is
part of the Web’s Hypertext Transfer Protocol (HTTP).

The CGI module handles both CGI scripts and the Scrip
tAlias con?g ?le command. It’s actually a great deal more
complicated than most modules, but if We’re going to have
only one example, it might as Well be the one With its ?ngers
in every place.

Let’s begin With handlers. In order to handle the CGI
scripts, the module declares a response handler for them.
Because of ScriptAlias, it also has handlers for the name
translation phase (to recogniZe ScriptAliased URIs), the
type-checking phase (any ScriptAliased request is typed as
a CGI script).

The module needs to maintain some per (virtual) server
information, namely, the ScriptAliases in effect; the module
structure therefore contains pointers to a functions Which
builds these structures, and to another Which combines tWo
of them (in case the main server and a virtual server both
have ScriptAliases declared).

Finally, this module contains code to handle the Scrip
tAlias command itself. This particular module only declares
one command, but there could be more, so modules have
command tables that declare their commands, and describe
Where they are permitted, and hoW they are to be invoked.
A ?nal note on the declared types of the arguments of

some of these commands: a pool is a pointer to a resource
pool structure; these are used by the server to keep track of
the memory Which has been allocated, ?les opened, etc.,
either to service a particular request, or to handle the process
of con?guring itself. That Way, When the request is over (or,
for the con?guration pool, When the server is restarting), the
memory can be freed, and the ?les closed, en masse, Without
anyone having to Write explicit code to track them all doWn
and dispose of them. Also, a cmd_parms structure contains
various information about the con?g ?le being read, and
other status information, Which is sometimes of use to the
function Which processes a con?g-?le command (such as
ScriptAlias). With no further ado, the module itself:

/* Declarations of handlers. */
int translateiscriptalias (requestirec *);
int typeiscriptalias (requestirec *);
int cgiihandler (requestirec *);
/* Subsidiary dispatch table for response-phase handlers,

by MIME type */
handlerirec cgiihandlers [] = {
{ "application/x-httpd-cgi”, cgiihandler },
{ NULL }

/* Declarations of routines to manipulate the module’s
con?guration

* info. Note that these are returned, and passed in, as
void *’s;

20

25

30

35

40

45

50

55

60

65

6

-continued

can t,

* the server core keeps track of them, but it doesn’t, and

* knoW their internal structure.

void *makeicgiiservericon?g (pool *);
void *mergeicgiiservericon?g (pool *, void *, void *);
/* Declarations of routines to handle con?g_?le commands

extern char *scriptialias (cmdiparrns *, void
*peridiricon?g, char *fake,char *real);

commandirec cgiicmds[] =
{ “ScriptAlias”, scriptialias, NULL, RSRCLCONF, TAKE2,

“a fakenalne and a realnalne”},

module cgiimodule = {
STANDARDLMODULELSTUFF,
NULL, /* initializer */
NULL, /* dir con?g creator */
NULL, /* dir merger ——— default is

to override */
makeicgiiservericon?g,
mergeicgiiservericon?g,
cgiicmds ,

cgiihandlers,
translateiscriptalias,
NULL,

/* server con?g */
/* merge server con?g */
/* command table */
/* handlers */
/* ?lenalne translation */
/* checkiuseriid */

NULL, /* check auth */
NULL, /* check access */
typeiscriptalias, /* typeichecker */

NULL, /* logger */
NULL /* header parser */

I‘;

The sole argument to handlers is a requestl3 rec structure.
This structure describes a particular request that has been
made to the server, on behalf of a client. In most cases, each
connection to the client generates only one request_rec
structure.

Referring to FIG. 4, an Apache request processing loop 70
is shoWn. A main transaction path is shoWn as a solid line
While a path taken When a handler returns an error is shoWn
With dashed lines. The request processing loop 70 is divided
into ten phases. If no handler is registered for a phase or
every handler declines the request, a default handler in the
server core is called.

In a post-read-request phase 72, handlers get called before
actual processing of the request starts. A proxy module for
example uses this hook to identify proxy requests and to
prevent other modules from processing it. In a URL trans
lation phase 74 the ?le or script is determined to Which the
current request refers. In a header parser phase 76 the HTTP
header information is parsed and stored in the internal data
structures to make them available to the folloWing phases.

In an access control phase 78, a module can check if the
client is alloWed to access the requested document. In an
authentication phase 80, if an authentication is necessary for
the requested document, a module can ask for user name and
passWord in this phase.

In an authoriZation phase 82, if an authentication has been
performed, a module can check if it Was valid. In a MIME
type-checking phase 84 a preliminary guess of the requested
document’s MIME type is determined. The decision may be
based on the document’s ?le extension, the name of its ?le,
or the document’s location in the document tree. A ?xups
phase 86 may, for example, be used to generate additional
HTTP header lines for the response. In a response phase 88,
the response handler (content handler) may adjust the HTTP
response header and the MIME type to suit its needs and Will

US 7,143 ,444 B2
7

provide the data that is sent to the client. In a logging phase
90, the processed request is logged.

Referring again to FIG. 3, the data collection process 50
takes relevant data of the request and packs it into a format
that the analysis engine 58 can understand.

Being integrated With the Web server process 32, relevant
data may include local variables that are never Written to a
log ?le, including intermediate results When interpreting
requests. It may also include hoW long it takes to execute a
request and detect possible denial-of-service (DoS) attacks.
Relevant data may also include data involving the entire
request, including headers. For example, relevant data may
identify the ?le Within the local ?le system that the request
is mapped to and may include a determination Whether the
program Will be handled as a CGI (common gateWay

interface).
The common format may be an Emerald format as

designed by SRI International, Inc. of Palo Alto, Calif., and
incorporated by reference herein (see WWW. sri.com).
An exemplary Emerald input record format is:

ptype[bsmievent
humanitime: string, ‘Header timestamp as a string.
headerieventitype: int, ‘Header event numerical ID
headeritime: int, ‘Header time as a numeric value.
headericommand: string, ‘Header event ID as a string

(event name)
headerisize: int, ‘Header byte count
msequenceNumber: int, ‘Sequence token number
pathiList: string, ‘Paths from one or several path

tokens
subjectiauid: int, ‘Subject audit ID
subjectieuid: int, ‘Subject effective user ID
subjectiruid: int, ‘Subject real user ID
subjectipid: int, ‘Subject process ID
subjectisid: int, ‘Subject audit session ID
subjectimachineiID: string, ‘Subject machine ID
iniaddriaddress: string, ‘Iniaddr Internet address
iniaddrihostname: string, ‘Iniaddr Internet hostname
attriuidList: int, ‘Attribute oWner UID
valiList: int, ‘Argument value
returnireturnivalue: int, ‘Return process value
returnierrorinumber: int, ‘Return process error
textList: string, ‘Text strings from one or several

text tokens
execiargs: string, ‘Exec arguments
execienvitxt: string, ‘Exec environment
socklisockitype: int, ‘Socket type
sockliremoteiport: int, ‘Socket remote port
sockliremoteiiaddr: string, ‘Socket remote IP address
socklilocaliport: int, ‘Socket local port
socklilocaliiaddr: string, ‘Socket local IP address
sock2isockitype: int, ‘Socket type for second socket

token
sock2iremoteiport: int, ‘Socket remote port for second

socket token
syntheticiparentCMD: string, ‘Synthetic parent command
syntheticiparentIP: string, ‘Synthetic parent IP address

More speci?cally, the above format represents a Solaris
BSM EMERALD template used to drive an eXper‘t-BSM
analysis. These ?elds represent a subset of the available
?elds produced in the Solaris BSM audit record structure.
Before analyZing audit records, eXper‘t-BSM’s event pre
processing service, ebsmgen, ?rst transforms the content of
each audit record into an internal message structure. These
messages include tWo important synthetic ?elds, called
synthetic_parentCmd and synthetic_parentIP. Although
audit records provide detailed information regarding each
system call, they do not identify the command (process
image name) under Which the system call Was invoked. The

20

25

30

35

40

45

50

55

60

65

8
synthetic_parentcmd ?eld tracks this important attribute by
observing exec calls. Second, although Solaris audit records
are structured to include information regarding source IP
information for transactions not performed from the console,
this information is unreliable across audit event types and
OS versions. By tracking the source IP information and
alWays reporting it in synthetic_parentIP, ebsmgen provides
consistently correct IP information for all audit records.
The folloWing represents an example BSM EMERALD

Transaction.
Message v0.0i ID 2 #9680 @ 2000-01-14 16:21:49.430491
UTC (396bytes) ?elds:

04:|?le.?le_index:1 (0x1)""
05:|header.siZe:219 (0xdb)
06: |header.event_type:23 (0x1 7)
07:|header.event_modi?er:0 (0x0)
08:lheader.seconds_of_time:947866909 (0x387f4d1d)
09: |header.milliseconds_of_time:430492888 (0x19a8ccd8)
1 0: |header.command:execve(2)
11:|header.time:2000-01-14 16:21:49.430491 UTC
34: |path.count:2 (0x2)
35:|path.pathList:[/usr/sbin/in.ftpd/usr/lib/ld.so. 1]
5 1 : |return.error_number:0 (0x0)""
52:|return.return_value:0 (0x0)
53:|subject.auid:0 (0x0)
54:|subject.euid:0 (0x0)
55:|subject.egid:0 (0x0)
56:|subject.ruid:0 (0x0)
57:|subject.rgid:0 (0x0)
58:|subject.pid:29205 (2x7215)
59:|subject.sid:0 (0x0)
73:|attribute.modeList:[33133 33261]
74:|attribute.uidList:[2 2]
75:|attribute.gidList:[2 2]
76:lattribute.?le_system_idList:[8388614 8388614]
77:lattribute.node_idList:[306304 11861]
78:|attribute.deviceList:[0 0]
95:|exec_args.count:1 (0x1)

97:|exec_env.count:2 (0x2)

1 17:lsynthetic.parentCmdI/usr/sbin/in.ftpd
118:|synthetic.parentIPAddr:109.09.99.9

Speci?cally, the above format illustrates an example in etd
exec syscall record, Which is initiating the FTP daemon.
Each message is passed on from the preprocessor to the
event handling interface of the expert system, Where it is
asserted as a fact according to a fact type de?nition knoWn
as a ptype in P-BEST.
An Emerald (Event Monitoring Enabling Responses to

Anomalous Live Disturbances) environment is a distributed
scalable tool suite for tracking malicious activity. Emerald is
a highly distributed, building-block approach to netWork
surveillance, attack isolation, and automated response. The
approach uses highly distributed, independently tunable,
surveillance and response monitors that are deployable
polymorphically at various abstract layers in a large net
Work. These monitors contribute to a streamlined event
analysis system that combines signature analysis With sta
tistical pro?ling to provide localiZed real-time protection of
the most Widely used netWork services on the Internet.

Referring again to FIG. 3, through a reliable piped logs
interface of Apache, the packed and formatted data is passed
to the auxiliary communications process 54. The auxiliary
communications process 54 hands the packed and formatted
data to the funneling process 56 through a socket. Apache

TZIUS/Pa

US 7,143 ,444 B2

can be con?gured to generate logs in any format. In addition,
on most Unix architectures, Apache can send log ?les to a
pipe, allowing for log rotation, hit ?ltering, real-time split
ting of multiple virtual hosts (vhosts) into separate logs, and
asynchronous DNS resolving on the ?y. The Apache reliable
log interface sends the log information directly to a program.
The term “reliable” signi?es that Apache does some check
ing on the opened channel, such as making sure the con
nection is still accepting data.

The funneling process 56 communicates With the analysis
engine 58 that is typically located in an external host and not
in the Web server 20. The funneling process 56, in an
Emerald framework, accepts incoming connections Where
Emerald messages can be transmitted, and passes the infor
mation to outgoing connections. The funneling process 56
can duplicate incoming information (having tWo different
analysis engines for the same application) or multiplex
several incoming ?oWs into one outgoing connection (com
paring the results of a netWork-based monitor With an
application integrated module for discrepancies). The fun
neling process 56 takes into account problems that might
appear in interprocess communication, such as lost connec
tions or necessary buffering. An example analysis engine 58
is the Emerald expert from SRI International, Inc., incorpo
rated by reference herein (see WWW.sri.com). The Emerald
expert analysis engine is a highly targetable signature
analysis engine based on the expert system shell P-BEST
(Production-Based Expert System Toolset). Under Emer
ald’s expert architecture, event-stream-speci?c rule set are
encapsulated Within resource objects that are then instanti
ated Within an Emerald monitor. The objects can then be
distributed to an appropriate observation point in the com
puting environment. This enables a spectrum of con?gura
tions from lightWeight distributed expert signature engines
to heavy-duty centraliZed host-layer expert engines, such as
those constructed for use in expert’s predecessors, NIDES
(Next-Generation Intrusion Detection Expert System), and
MIDAS (Multics Intrusion Detection Alerting System). In a
given environment, P-BEST-based experts may be indepen
dently distributed to analyZe the activity of multiple netWork
services (e.g., FTP, SMTP, HTTP) or netWork elements (e.g.,
a router or ?reWall). As each Emerald expert is deployed to
its target, it is instantiated With an appropriate resource
object (e.g., an FTP resource object for FTP monitoring),
While the expert code base remains independent of the
analysis target.

Referring to FIG. 5, the application-integrated intrusion
detection process 34 includes receiving (100) control in a
logging stage of a request cycle from a Web server process.
The process 34 extracts (102) relevant data of a request and
packs (104) the relevant data in a common format. The
process 34 passes (106) the packed data to an auxiliary
process. The process 34 transfers (108) the packed data from
the auxiliary process to a funneling process. The process 34
sends (110) the packed data from the funneling process to an
analysis process.
A number of embodiments of the invention have been

described. Nevertheless, it Will be understood that various
modi?cations may be made Without departing from the spirit
and scope of the invention. For example, the analysis
process may reside Within the ?rst server. In other embodi
ments, the funneling process may replicate the subset and
pass the replicated subsets to multiple analysis processes
located at diverse positions throughout a netWork. Accord
ingly, other embodiments are Within the scope of the fol
loWing claims.

20

25

30

35

40

45

50

55

60

65

10
What is claimed is:
1. A method comprising:
in a server, hosting an intrusion detection process that

provides intrusion detection services;
integrating the intrusion detection process With a server

process; and
passing a request for data received by the server process

to the intrusion detection process,
Where the intrusion detection process comprises:

packing a subset of information from the request into
an analysis format; and

delivering the subset in a funneling process, via a
socket, to an analysis process.

2. The method of claim 1 in Which integrating comprises:
de?ning global application programmer interface (API)

structures in the intrusion detection process to establish
a connection to an application programmer interface
(API) of the server process.

3. The method of claim 1 further comprising analyZing the
subset In the analysis process.

4. The method of claim 1 in Which the server is a Web
server.

5. The method of claim 1 in Which the analysis process is
resident in the server.

6. The method of claim 1 in Which the analysis process is
resident outside of the server.

7. The method of claim 1 in Which the funneling process
comprises:

accepting incoming connections to Which the subset can
be transmitted; and

passing the subset to outgoing connections.
8. The method of claim 1 in Which the funneling process

further comprises duplicating the subset for delivery to a
second analysis process.

9. A method comprising:
conveying a request for data received by a Web server

process executing in a ?rst server to a detection process
that includes:
packing a subset of information from the request into

an analysis format; and
passing the subset to an analysis process, Where passing

comprises:
receiving the subset in a piped logs interface of the
Web server; and

delivering the subset to a funneling process via a
socket.

10. The method of claim 9 also including analyZing the
subset in the analysis process.

11. The method of claim 10 in Which the analysis process
is resident in the ?rst server.

12. The method of claim 10 in Which the analysis process
is resident in a second server.

13. The method of claim 9 in Which the detection process
is resident in the ?rst server.

14. The method of claim 9 in Which the funneling process
comprises:

accepting incoming connections to Which the subset can
be transmitted; and

passing the subset to outgoing connections.
15. The method of claim 9 in Which the funneling process

further comprises duplicating the subset for delivery to a
second analysis process.

16. A computer program product residing on a computer
readable medium having instructions stored thereon Which,
When executed by a processor, cause the processor to:

host, in a server, an intrusion detection process that
provides intrusion detection services;

US 7,143 ,444 B2
11

integrate the intrusion detection process With a server
process; and

pass a request for data received by the server process to
the intrusion detection process,

Where the intrusion detection process comprises:
packing a subset of information from the request into

an analysis format; and
delivering the subset in a funneling process, via a

socket, to an analysis process.
17. A computer program product residing on a computer

readable medium having instructions stored thereon Which,
When executed by a processor, cause the processor to:

convey a request for data received by a Web server process
executing in a ?rst server to a detection process that
includes:

pack a subset of information from the request into an
analysis format; and

pass the subset to an analysis process, Where passing
comprises:
receiving the subset in a piped logs interface of the Web

server; and

10

20

12
delivering the subset to a funneling process via a

socket.

18. Amethod for detecting misuse of an application server
process that is hosted at a server in a netWork, the method
comprising:

receiving, from the application server process, a for
Warded request for data;

packing a subset of information from the request into an
analysis format; and

delivering the subset in a funneling process, via a socket,
to an analysis process.

19. The method of claim 18, Wherein the application
server process is a Web server process.

20. The method of claim 18, Wherein the analysis process
is resident outside of the server.

21. The method of claim 18, further comprising analyZing
the subset in the analysis process.

